首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94980篇
  免费   13136篇
  国内免费   9296篇
化学   37260篇
晶体学   642篇
力学   8767篇
综合类   1463篇
数学   26783篇
物理学   42497篇
  2024年   137篇
  2023年   908篇
  2022年   1659篇
  2021年   2875篇
  2020年   2980篇
  2019年   2810篇
  2018年   2545篇
  2017年   3104篇
  2016年   3671篇
  2015年   3203篇
  2014年   4670篇
  2013年   7544篇
  2012年   5391篇
  2011年   6163篇
  2010年   5283篇
  2009年   6329篇
  2008年   6260篇
  2007年   6418篇
  2006年   5333篇
  2005年   4321篇
  2004年   3973篇
  2003年   3645篇
  2002年   3356篇
  2001年   2839篇
  2000年   2404篇
  1999年   1986篇
  1998年   1864篇
  1997年   1411篇
  1996年   1298篇
  1995年   1202篇
  1994年   1130篇
  1993年   1020篇
  1992年   968篇
  1991年   722篇
  1990年   647篇
  1989年   551篇
  1988年   536篇
  1987年   483篇
  1986年   457篇
  1985年   595篇
  1984年   488篇
  1983年   274篇
  1982年   474篇
  1981年   606篇
  1980年   521篇
  1979年   572篇
  1978年   468篇
  1977年   377篇
  1976年   317篇
  1973年   214篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
991.
Automotive fuel adulteration is an old and significant problem. One common type of fuel adulteration is the addition of diesel to gasoline. Unsupervised models were developed through hierarchical cluster and principal component analysis models. Supervised models through partial least square discriminant analysis using 1H nuclear magnetic resonance spectra as the input were used to classify samples as adulterated or unadulterated. Quantitative models were developed using partial least squares to determine the gasoline and diesel concentrations in the samples. This set contained samples composed of pure gasoline and anhydrous ethanol reproducing commercial gasoline and other samples treated with diesel. Hierarchical cluster and principal component analysis did not distinguish between adulterated and unadulterated samples except for the most adulterated materials. However, partial least square discriminant analysis classified 100% of the samples correctly. The partial least square algorithm provided excellent regression models for the gasoline and diesel content. The determination coefficient was 0.9920 for both models, whereas the root mean square error of cross-validation and root mean square error of prediction for the diesel model were 2.32 and 1.42%, respectively, and 2.40 and 1.38% for the gasoline model.  相似文献   
992.
ABSTRACT

Two nanostructured hybrid materials are reported that include uncoated magnetic nanoiron oxides and magnetic nanoiron oxides treated with rose leaf extract. Atomic and molecular absorption spectrometry were used to evaluate the sensitivity of these materials for the isolation of Cr(VI), Zn(II), Pb(II), and Ca(II) from aqueous solution. The structure and physicochemical properties of the resulting nanohybrids were characterized by scanning electron microscopy coupled with energy-dispersive spectroscopy, atomic force microscopy, and X-ray diffraction. The results show that following 15?min of contact in acidic solution, the uncoated magnetic nanoiron oxides removed approximately 90% of Cr(VI), while the magnetic nanoiron oxides coated with rose leaf extract removed 92% of the analyte. These correspond to most industrial wastewater conditions. For the removal of Ca(II) and Zn(II), it was necessary to adjust the pH to neutral to maximize the efficiency. Pb(II) showed maximum removal efficiency when the solution is basic. The simple rose extract suspension was also used for metal removal with high capacity. The results demonstrate that the magnetic nanoiron oxides were uniformly distributed in the rose leaf extract. The extract served as a capping agent due to the presence of polyphenolics.  相似文献   
993.
Two nitrate salts of the well-known, and due to its significant biological activity very important, compound pyridoxylidene aminoguanidine (PLAG) were obtained in the form of single crystals. Thus this ligand is structurally characterized for the first time. In addition, the first data on the structure of a Schiff base of aminoguanidine with the active form of vitamin B6, i.e. pyridoxal-phosphate, of the formula PLPAG·HCl·2H2O, are presented. Two new square-pyramidal Cu(II) complexes of PLAG were synthesized and their physicochemical and structural properties analyzed. In these complexes, PLAG is coordinated as a zwitter-ion, in a tridentate ONN manner, via the oxygen atom of the deprotonated phenolic OH-group and nitrogen atoms of the azomethine and imino group of the aminoguanidine moiety. For the first time it was possible to make a comparative analysis of the structural properties of ligand salts and the coordinated ligand, so the effects of coordination could be unequivocally pointed out. Common fragments encountered in ligand structures were compared by half-normal probability plots. Density functional theory calculations have been conducted in order to gain insight into reactive properties of the investigated molecules. Molecular electrostatic potential, average local ionization energy surfaces, and Fukui functions have been calculated in order to obtain further information on the reactive properties.  相似文献   
994.
A series of novel dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,2-phenylenebis(methylene))dicyclohexane-1,2-diamine (HL), and mono-carboxylic acid derivatives as ligands have been designed, synthesized, and characterized. In vitro cytotoxicity evaluation of synthesized complexes against human HepG-2, A549, HCT-116, and MCF-7 cancer cell lines has been conducted by MTT assays. All compounds showed antitumor activity to HepG-2 and HCT-116 cell lines. Compound L2 exhibited better cytotoxicity than that of carboplatin against HepG-2 and A549 cell lines and also showed comparable activity against HCT-116 cell line.  相似文献   
995.
Two coordination polymers, [Mn2(μ-L1)2(μ-N3)2]n (1) and [Mn(μ-HL2)(SCN)2]n (2), were assembled in a single-pot from MnCl2·4H2O, HL1 (2-acetylpyridine isonicotinoylhydrazone) or HL2 (2-acetylpyridine nicotinoylhydrazone) and ancillary ligand sources (NaN3 or NH4NCS). The products were fully characterized, including by single-crystal X-ray diffraction, which revealed a 2-D metal–organic layer in 1 and a 1-D zigzag coordination chain in 2. Both 1 and 2 are constructed from six-coordinate Mn(II) nodes that adopt distorted octahedral (MnN5O) environments; the adjacent nodes are driven by the μ-L1 and μ-N3 linkers in 1 or μ-HL2 linkers in 2 to form different metal–organic networks. Their topological classification was performed, disclosing the hcb and 2C1 topology in 1 and 2, respectively. Different weak non-covalent interactions promote dimensionality extension. Variable-temperature magnetic susceptibility measurements were carried out, revealing weak ferromagnetic and antiferromagnetic interactions in 1 and 2, respectively.  相似文献   
996.
A new form of charged particle energy analyser is proposed. It is broadly based on the 180° magnetic spectrograph, but is intended to detect charged particles moving out of the dispersion plane with a helical motion. The analyser has the capability to acquire charged particle energy spectra over a large energy range, similar to those acquired in Auger electron spectroscopy, ca. 2500 eV and large angular range, up to 90°, in parallel. These conditions are more favourable for surface analysis by electron spectroscopy at high vacuum, where for example an electron energy resolution of 0.2% to 0.5% is typical. Expressions showing how the landing positions of the charged particles on the detector vary as a function of energy and polar take off angle are determined as well as the conditions for optimum energy resolution at a range of polar take off angles. The equations reveal that in general, the device obtains the highest resolution at angles of revolution greater than 180°. The design is simple and could be easily put into practice using available material and technologies and be used to analyse the energies of electrons emitted from a sample placed in a scanning electron microscope. It can be made to function with a primary electron beam of any desired energy and could fit in to the small space between the sample and the end of an electron column. However, the device is difficult to retrofit into existing SEMs and ideally an SEM column needs to be designed to work in association with the analyser. The direction of the magnetic field of the analyser is coincident with the axis of the electron gun so that the primary beam is little influenced by the magnetic field and symmetry can be maintained in the primary beam electron column. Because the device is intended to acquire electron spectra in parallel, any movement of the primary beam on the sample because of a ramping field in the analyser is avoided. The field of view and the effect of the analyser upon the operation of the SEM are discussed. Spectra including elastic and Auger peaks reveal an energy resolution of ~4 eV at 900‐eV electron energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
997.
A Parabola-Hyperbola (P-H) kinetic model for NR sulphur vulcanization is presented. The idea originates from the fitting composite Parabola-Parabola-Hyperbola (P-P-H) function used by the authors in [1,2] to approximate experimental rheometer curves with the knowledge of a few key parameters of vulcanization, such as the scorch point, initial vulcanization rate, 90% of vulcanization, maximum point and reversion percentage. After proper normalization of experimental data (i.e. excluding induction and normalizing against maximum torque), the P-P-H model reduces to the discussed P-H composite function, which is linked to the kinetic scheme originally proposed by Han and co-workers [3]. Typically, it is characterized by three kinetic constants, where classically the first two describe incipient curing and stable/instable crosslinks and the last reproduces reversion.The powerfulness of the proposed approach stands into the very reduced number of input parameters required to accurately fit normalized experimental data (i.e. rate of vulcanization at scorch, vulcanization at 90%, maximum point and reversion percentage), and the translation of a mere geometric data-fitting into a kinetic model. Kinetic constants knowledge from simple geometric fitting allows characterizing rubber curing also at temperature different from those experimentally tested.The P-H model can be applied also in the so-called backward direction, i.e. assuming Han's kinetic constants known from other models and deriving the geometric fitting parameters as result.Some existing experimental data available, relying into rheometer curves conducted at 5 different temperatures on the same rubber blend are used to benchmark the P-H kinetic approach proposed, in both backward and forward direction. Very good agreement with previously presented kinetic approaches and experimental data is observed.  相似文献   
998.
Hybrid composites are promising materials due the possibility of combining the properties of different fiber types with those of the polymeric matrix. The higher number of phases involved in this kind of material and the hydrostatic component of polymer behavior make it unfeasible to use classic models for failure prediction, like the Von Mises or Treska models. In this study, a modified Arcan's device was applied for mechanical characterization of a polymeric blend matrix composite reinforced with randomly oriented continuous fibers (a clutch disc) to generate combined loading conditions. Experimental results were applied in the Von Mises and Drucker-Prager theoretical models for failure prediction. Additionally, scanning electron microscopy (SEM) was applied to analyze the fracture surface. The failure envelope provided by the Drucker-Prager model fit the experimental results, making it a promising tool for predicting the behavior of this type of hybrid composite.  相似文献   
999.
Shape memory polymers (SMPs) have received great attention and scientific interest in widespread technological development during last few decades. Besides the development of novel SMPs, various techniques have been practiced for characterization of shape memory effect (SME) of SMPs. In this study, the shape memory effect and recovery stress property of the carbon nanotube (CNT)/waterborne epoxy (WEP) nanocomposites below and above the glass transition temperature (Tg) of the nanocomposites and under isostrain and isostress were systematically investigated via thermal mechanical analysis (TMA), respectively. The experimental results showed that the nanocomposites exhibit excellent shape memory effect. The shape memory fixity and recovery ratios were approximately 100% even below glass transition temperature (Tg). A remarkable point is that the strain of the nanocomposites suddenly increased with the temperature decreasing in a certain period of the heating-cooling cycles under isostress condition and the strain increment increased with temperature in general. Especially at low temperature, the recovery stress was very sensitive to temperature under isostrain condition of ±0.25 °C temperature with differential of 25.5 °C developed pressure difference of 0.20 MPa. Moreover, TMA is a practical method for quantifying the SME and recovery stress properties of SMPs and their composites.  相似文献   
1000.
Frequency-sweep tests at various temperatures were conducted to study the asymmetric dynamic response of carbon black (CB) filled rubber. The master curves of storage modulus were constructed by use of time-temperature superposition (TTS), and the dynamic response of the material over a wide range of frequencies covering about 20 decades exhibits asymmetry. Based on the experimental results, the fractional Zener model and Prony series are verified to be unsuitable to reproduce the dynamicviscoelastic behavior. Therefore, a modified model by adding a spring-pot into the fractional Zener model is presented. The applicability of the modified model in describing the dynamic behavior of the CB-filled rubber is validated by the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号